B501 Assignment 3

Due Date: Wednesday, February 29, 2012 Due Time: 11:00pm

1. (10 points) Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class of regular languages under union, intersection, and complement.
(a) $\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$
(b) $\left\{w t w \mid w, t \in\{0,1\}^{+}\right\}$
2. (10 points) Let $B=\left\{1^{k} y \mid y \in\{0,1\}^{*}\right.$ and y contains at least $k 1 \mathrm{~s}$, for $k>1\}$. Show that B is a regular language.
3. (15 points) The pumping lemma says that every regular language has a pumping length p, such that every string in the language can be pumped if it has length p or more. If p is a pumping length for language A, so is any length $p^{\prime} \geq p$. The minimum pumping length for A is the smallest p that is a pumping length for A. For example, if $A=01^{*}$, the minimum pumping length is 2 . The reason is that the string $s=0$ is in A and has length 1 yet s cannot be pumped, but any string in A of length 2 or more contains a 1 and hence can be pumped by dividing it so that $x=0, y=1$, and z is the rest. For each of the following languages, give the minimum pumping length and justify your answer.
(a) 0001*
(b) $001 \cup 0^{*} 1^{*}$
(c) $1^{*} 01^{*} 01^{*}$
4. (10 points) Let A be an infinite regular language. Prove that A can be split into two infinite disjoint regular subsets.
5. Minimize the following DFA's
(a) (10 points)

(b) (10 points)

